论文标题
音色和颜色之间的一些数学和计算关系
Some mathematical and computational relations between timbre and color
论文作者
论文摘要
在物理学中,Timbre是一种复杂的现象,例如颜色。音乐音色是由正弦信号的叠加给出的,对应于纵向声波。颜色是由可见光域中横向电磁波的叠加产生的。关于人类的感知,特定的音色变化会引起与颜色变化相似的效果,例如,张力的上升或放松效应。我们旨在创建一个计算框架来调节音色和颜色。为此,我们考虑分类的类固醇,其中颜色(短音色)是对象和颜色变化(音色变化)是形态主义,它们之间的功能因子是由连续地图诱导的。我们还绘制了该方案的一些手势变化。因此,我们试图软化差异并关注结构的相似性。
In physics, timbre is a complex phenomenon, like color. Musical timbres are given by the superposition of sinusoidal signals, corresponding to longitudinal acoustic waves. Colors are produced by the superposition of transverse electromagnetic waves in the domain of visible light. Regarding human perception, specific timbre variations provoke effects similar to color variations, for example, a rising tension or a relaxation effect. We aim to create a computational framework to modulate timbres and colors. To this end, we consider categorical groupoids, where colors (timbres) are objects and color variations (timbre variations) are morphisms, and functors between them, which are induced by continuous maps. We also sketch some gestural variations of this scheme. Thus, we try to soften the differences and focus on the similarity of structures.