论文标题

具有结构性异质性种群的足够尺寸降低

Sufficient Dimension Reduction for Populations with Structured Heterogeneity

论文作者

Huling, Jared D., Yu, Menggang

论文摘要

为大型和多样化人群建立有效回归模型的主要挑战是患者异质性。这种异质性的一个例子是卫生系统风险建模工作,其中合并症的不同组合从根本上改变了协变量与健康结果之间的关系。考虑因素组合的异质性可以产生更准确和可解释的回归模型。然而,在存在高维协变量的情况下,即使使用较大的样本量,这种类型的异质性也会加剧估计困难。为了解决这些问题,我们提出了一种基于半参数降低尺寸的灵活且可解释的风险建模方法。该方法解释了患者的异质性,借用相关亚群的估计中的强度,以提高估计效率和解释性,并可以用作有用的探索工具或有力的预测模型。在模拟示例中,我们表明我们的方法通常会在存在异质性的情况下提高估计性能,并且与其关键基础假设的偏差相当强大。我们在分析大型卫生系统的医院入院风险中证明了我们的方法,并在进一步的后续数据测试时证明了其预测能力。

A key challenge in building effective regression models for large and diverse populations is accounting for patient heterogeneity. An example of such heterogeneity is in health system risk modeling efforts where different combinations of comorbidities fundamentally alter the relationship between covariates and health outcomes. Accounting for heterogeneity arising combinations of factors can yield more accurate and interpretable regression models. Yet, in the presence of high dimensional covariates, accounting for this type of heterogeneity can exacerbate estimation difficulties even with large sample sizes. To handle these issues, we propose a flexible and interpretable risk modeling approach based on semiparametric sufficient dimension reduction. The approach accounts for patient heterogeneity, borrows strength in estimation across related subpopulations to improve both estimation efficiency and interpretability, and can serve as a useful exploratory tool or as a powerful predictive model. In simulated examples, we show that our approach often improves estimation performance in the presence of heterogeneity and is quite robust to deviations from its key underlying assumptions. We demonstrate our approach in an analysis of hospital admission risk for a large health system and demonstrate its predictive power when tested on further follow-up data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源