论文标题
$ \ mathbb {r}^n $ submanifolds的断层傅里叶扩展标识
Tomographic Fourier Extension Identities for Submanifolds of $\mathbb{R}^n$
论文作者
论文摘要
我们为组合$ t_ {k,n}(| \ wideHat {gdσ} |^2)$建立身份,其中$ g \ mapsto \ widehat {gdσ} $是与一般$ k $ k $ dimensional submanifold相关的傅里叶扩展运算符, $ K $ - 平面变换。提出了与傅立叶限制理论中问题的几个联系。
We establish identities for the composition $T_{k,n}(|\widehat{gdσ}|^2)$, where $g\mapsto \widehat{gdσ}$ is the Fourier extension operator associated with a general smooth $k$-dimensional submanifold of $\mathbb{R}^n$, and $T_{k,n}$ is the $k$-plane transform. Several connections to problems in Fourier restriction theory are presented.