论文标题

次级时空随机场的宏观结构复杂性分析

Macroscale structural complexity analysis of subordinated spatiotemporal random fields

论文作者

Angulo, J. M., Ruiz-Medina, M. D.

论文摘要

广泛的时空和时空过程的大规模行为在信息措施方面具有特征。具体而言,在远程依赖性(LRD)假设下研究了由非线性转换定义的次级随机场。在空间情况下,证明了针对无限增加距离的边际分布之间的香农相互信息,可以正确地解释为衡量宏观结构复杂性和多样性的量度,具有直接取决于基础的LRD LRD参数的渐近功率衰减,该参数由下属函数等级缩放。还分析了基于差异的rényi共同信息给出的变形参数引起的变形的敏感性。在时空框架中,采用了空间无限二维随机场方法。然后,根据兰开斯特 - 萨曼诺夫随机场类别的功能公式以及基于差异的互信息的功能公式的提议,对大规模渐近行为进行了研究。在样本路径的几何分析的背景下说明了结果,考虑了一些基于高斯和卡方次级空间和时空随机场的情况。

Large-scale behavior of a wide class of spatial and spatiotemporal processes is characterized in terms of informational measures. Specifically, subordinated random fields defined by non-linear transformations on the family of homogeneous and isotropic Lancaster-Sarmanov random fields are studied under long-range dependence (LRD) assumptions. In the spatial case, it is shown that Shannon mutual information beween marginal distributions for infinitely increasing distance, which can be properly interpreted as a measure of macroscale structural complexity and diversity, has an asymptotic power decay that directly depends on the underlying LRD parameter, scaled by the subordinating function rank. Sensitivity with respect to distortion induced by the deformation parameter under the generalized form given by divergence-based Rényi mutual information is also analyzed. In the spatiotemporal framework, a spatial infinite-dimensional random field approach is adopted. The study of the large-scale asymptotic behavior is then extended under the proposal of a functional formulation of the Lancaster-Sarmanov random field class, as well as of divergence-based mutual information. Results are illustrated, in the context of geometrical analysis of sample paths, considering some scenarios based on Gaussian and Chi-Square subordinated spatial and spatio-temporal random fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源