论文标题

精确的位置匹配可以改善数字病理中的密集对比度学习

Precise Location Matching Improves Dense Contrastive Learning in Digital Pathology

论文作者

Zhang, Jingwei, Kapse, Saarthak, Ma, Ke, Prasanna, Prateek, Vakalopoulou, Maria, Saltz, Joel, Samaras, Dimitris

论文摘要

密集的预测任务,例如对病理实体的分割和检测,在计算病理学工作流程中具有关键的临床价值。但是,在大型队列上获得密集的注释通常是乏味且昂贵的。因此,经常使用对比度学习(CL)来利用大量未标记的数据来预先培训骨干网络。为了提高CL进行密集的预测,一些研究提出了预训练中密集匹配目标的变化。但是,我们的分析表明,在组织病理学图像上采用现有密集的匹配策略会在不正确的密集特征对之间实现不变性,因此是不精确的。为了解决这个问题,我们提出了一种基于位置的匹配机制,该机制利用几何转换之间的重叠信息到两个增强物中精确匹配区域。在两个预处理数据集(TCGA-BRCA,NCT-CRC-HE)和三个下游数据集(GLAS,GLA,CRAG,BCSS)上进行了广泛的实验,突出了我们在语义和实例分割任务中我们方法的优势。我们的方法的平均检测精度高于先前的密集匹配方法高达7.2%,平均精度为5.6%。此外,通过在三个流行的对比学习框架中使用我们的匹配机制MOCO-V2,VICREGL和结论,检测的平均精度提高了0.7%至5.2%,分段中的平均精度提高了0.7%至4.0%,表明概括性概括。我们的代码可在https://github.com/cvlab-stonybrook/plm_ssl上找到。

Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in computational pathology workflows. However, obtaining dense annotations on large cohorts is usually tedious and expensive. Contrastive learning (CL) is thus often employed to leverage large volumes of unlabeled data to pre-train the backbone network. To boost CL for dense prediction, some studies have proposed variations of dense matching objectives in pre-training. However, our analysis shows that employing existing dense matching strategies on histopathology images enforces invariance among incorrect pairs of dense features and, thus, is imprecise. To address this, we propose a precise location-based matching mechanism that utilizes the overlapping information between geometric transformations to precisely match regions in two augmentations. Extensive experiments on two pretraining datasets (TCGA-BRCA, NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight the superiority of our method in semantic and instance segmentation tasks. Our method outperforms previous dense matching methods by up to 7.2% in average precision for detection and 5.6% in average precision for instance segmentation tasks. Additionally, by using our matching mechanism in the three popular contrastive learning frameworks, MoCo-v2, VICRegL, and ConCL, the average precision in detection is improved by 0.7% to 5.2%, and the average precision in segmentation is improved by 0.7% to 4.0%, demonstrating generalizability. Our code is available at https://github.com/cvlab-stonybrook/PLM_SSL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源