论文标题
收紧AC最佳传输开关问题的二次凸松弛
Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem
论文作者
论文摘要
交替的当前最佳传输切换(ACOT)问题将线路切换决策纳入交流最佳功率流(ACOPF)框架,从而在降低运营成本和增强系统可靠性方面具有众所周知的好处。 ACOT的优化模型包含离散变量和非线性,非凸约限制,这使得难以解决。在这项工作中,我们为ACOT开发了增强的二次凸(QC)松弛,在那里我们使用几种新的有效不平等,包括一种新型的基于ON/OFF循环的多项式约束,通过利用网络结构来收紧放松。我们使用极端表达式在放松中将ON/OFF三联术语的总和线性化,并证明理论紧密度,并通过基于编程的切割平面有效地结合了基于/OFF循环的多项式约束。结合一种基于优化的绑定拧紧算法,这导致迄今为止最紧密的基于QC的ACOTS松弛。我们还提出了一种新颖的基于树的最大启发式启发式,以通过固定要打开的某些线条来改善计算性能。我们在中等规模的PGLIB实例上进行的广泛数值实验显示出对松弛范围的显着改善,而对高达2,312辆巴士的大规模实例进行了测试,表现出可观的性能增长。据我们所知,这是第一种基于ACOTS放松的方法,可以在现实的大规模电网实例上展示近乎最佳的切换解决方案。
The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the AC Optimal Power Flow (ACOPF) framework, offering well-known benefits in reducing operational costs and enhancing system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult to solve. In this work, we develop strengthened quadratic convex (QC) relaxations for ACOTS, where we tighten the relaxation with several new valid inequalities, including a novel kind of on/off cycle-based polynomial constraints by taking advantage of the network structure. We linearize the sum of on/off trilinear terms in the relaxation using extreme-point representation, demonstrating theoretical tightness, and efficiently incorporate on/off cycle-based polynomial constraints through disjunctive programming-based cutting planes. Combined with an optimization-based bound tightening algorithm, this results in the tightest QC-based ACOTS relaxation to date. We additionally propose a novel maximum spanning tree-based heuristic to improve the computational performance by fixing certain lines to be switched on. Our extensive numerical experiments on medium-scale PGLib instances show significant improvements on relaxation bounds, while tests on large-scale instances with up to 2,312 buses demonstrate substantial performance gains. To our knowledge, this is the first ACOTS relaxation-based approach to demonstrate near-optimal switching solutions on realistic large-scale power grid instances.