论文标题
新的底部结果
Novel Bottomonium Results
论文作者
论文摘要
我们介绍了使用Backus-Gilbert方法在非零温度下使用各向异性快速合奏组合NRQCD底部介体的光谱。我们特别关注$η_b$,$υ$,$χ_{b1} $和$ H_B $的结果,从Tikhonov登记的Backus-Gilbert系数集。我们扩展了对拉普拉斯(Laplace)转移定理的先前工作,作为解决方案的改进手段,并从其使用中提出了新的结果。最后,我们讨论了改进程序的局限性,并阐明了与Parisi-Lepage统计缩放的联系。
We present the latest results from the use of the Backus-Gilbert method for reconstructing the spectra of NRQCD bottomonium mesons using anisotropic FASTSUM ensembles at non-zero temperature. We focus in particular on results from the $η_b$, $Υ$, $χ_{b1}$ and $h_b$ generated from Tikhonov-regularized Backus-Gilbert coefficient sets. We extend previous work on the Laplace shifting theorem as a means of resolution improvement and present new results from its use. We conclude with a discussion of the limitations of the improvement routine and elucidate a connection with Parisi-Lepage statistical scaling.