论文标题
重力波镜头作为光环特性和暗物质的探针
Gravitational wave lensing as a probe of halo properties and dark matter
论文作者
论文摘要
就像光一样,引力波(GWS)在引力场通过宇宙传播时被重力偏转和放大。但是,它们的低频率,相干性和微弱的耦合可以使镜头现象(例如衍射和中央图像)具有不同的镜头现象,这些现象难以通过电磁源观察。在这里,我们探讨了如何使用这些现象来探测重力透镜的特征。我们专注于奇异等温球的两个变体,其中1)物质密度的可变斜率和2)中心核心。我们描述了这些特征在波浪和几何镜面方案中的烙印,包括检测中央图像的前景。我们预测Lisa和Advanced Ligo能够研究强烈镜头信号并测量预计的晶状体质量,冲击参数以及斜率或核心大小的能力。尽管大量变性,但范围广泛的镜头质量允许精确测量所有参数。多亏了波动式校正,即使没有中央图像形式,也可以测量所有参数。尽管GWS对预计数量很敏感,但我们计算了宇宙学的镜头红移,病毒质量和投影量表的概率分布。作为应用程序,我们考虑限制自我相互作用和超光暗物质的前景,显示参数空间的区域可访问强镜的GWS。独特的GW签名将使基本物理和天体物理学的新型探针,包括暗物质的特性和银河系晕的中央区域。
Just like light, gravitational waves (GWs) are deflected and magnified by gravitational fields as they propagate through the Universe. However, their low frequency, phase coherence and feeble coupling to matter allow for distinct lensing phenomena, such as diffraction and central images, that are challenging to observe through electromagnetic sources. Here we explore how these phenomena can be used to probe features of gravitational lenses. We focus on two variants of the singular isothermal sphere, with 1) a variable slope of the matter density and 2) a central core. We describe the imprints of these features in the wave- and geometric-optics regimes, including the prospect of detecting central images. We forecast the capacity of LISA and advanced LIGO to study strongly lensed signals and measure the projected lens mass, impact parameter and slope or core size. A broad range of lens masses allows all parameters to be measured with precision up to $\sim 1/{\rm SNR}$, despite large degeneracies. Thanks to wave-optics corrections, all parameters can be measured, even when no central image forms. Although GWs are sensitive to projected quantities, we compute the probability distribution of lens redshift, virial mass and projection scale given a cosmology. As an application, we consider the prospect of constraining self-interacting and ultra-light dark matter, showing the regions of parameter space accessible to strongly-lensed GWs. The distinct GW signatures will enable novel probes of fundamental physics and astrophysics, including the properties of dark matter and the central regions of galactic halos.