论文标题
使用深度学习的纵隔淋巴结检测和分割
Mediastinal Lymph Node Detection and Segmentation Using Deep Learning
论文作者
论文摘要
自动淋巴结(LN)分割和癌症分期的检测至关重要。在临床实践中,计算机断层扫描(CT)和正电子发射断层扫描(PET)成像检测异常LN。尽管其对比度低,并且在淋巴结尺寸和形式方面多样性,但LN细分仍然是一项具有挑战性的任务。深度卷积神经网络经常在医疗照片中细分项目。大多数最先进的技术通过合并和卷积破坏了图像的解决。结果,模型提供了不令人满意的结果。考虑到问题,使用双线性插值和总体广义变化(TGV)基于基于上采样的策略来修改完整的深度学习技术,以细分和检测纵隔淋巴结。修改后的UNET保持纹理不连续性,选择嘈杂区域,通过反向传播搜索适当的平衡点,并重新创建图像分辨率。从TCIA,5名患者和ELCAP公共数据集收集CT图像数据,在经验丰富的医学专家的帮助下准备了一个数据集。使用这些数据集对UNET进行了训练,并将三种不同的数据组合用于测试。使用建议的方法,该模型的精度达到94.8%,jaccard 91.9%,召回率为94.1%,Combo_3的精度为93.1%。性能是在不同的数据集上测量的,并与最先进的方法进行了比较。具有杂交策略的UNET ++模型的性能要比其他模型更好。
Automatic lymph node (LN) segmentation and detection for cancer staging are critical. In clinical practice, computed tomography (CT) and positron emission tomography (PET) imaging detect abnormal LNs. Despite its low contrast and variety in nodal size and form, LN segmentation remains a challenging task. Deep convolutional neural networks frequently segment items in medical photographs. Most state-of-the-art techniques destroy image's resolution through pooling and convolution. As a result, the models provide unsatisfactory results. Keeping the issues in mind, a well-established deep learning technique UNet was modified using bilinear interpolation and total generalized variation (TGV) based upsampling strategy to segment and detect mediastinal lymph nodes. The modified UNet maintains texture discontinuities, selects noisy areas, searches appropriate balance points through backpropagation, and recreates image resolution. Collecting CT image data from TCIA, 5-patients, and ELCAP public dataset, a dataset was prepared with the help of experienced medical experts. The UNet was trained using those datasets, and three different data combinations were utilized for testing. Utilizing the proposed approach, the model achieved 94.8% accuracy, 91.9% Jaccard, 94.1% recall, and 93.1% precision on COMBO_3. The performance was measured on different datasets and compared with state-of-the-art approaches. The UNet++ model with hybridized strategy performed better than others.