论文标题
强烈夺回政权中的自我相互作用引力原子
Self-Interacting Gravitational Atoms in the Strong-Gravity Regime
论文作者
论文摘要
我们在数值上研究了一般相对论的黑洞周围周围的自由互动和自我互动的超轻标量场。我们专注于复杂的标量字段$φ$,其自身互动的四分之一势$ v \ proptoλ|φ|^4 $描述,并且忽略了黑洞旋转,以解散自我相互作用对玻色子云的影响。使用光谱求解器kadath,我们计算主要本征态的准平衡构型,包括它们在时空度量标准上的反射。对于具有$ -10^{ - 2} \ Lessimλ\ Lessim 10^{ - 2} $的方案,我们发现自由标量的自我交织标量云的质量最高为$ \ sim 70 \%$比自由标量云大于$ \%$ \%$ \%$ \%$ \%$ \%$ \%$ \%。在这个参数空间的区域中,我们观察到云的质量之间的近似二次尺度,具有$λ$,标量场振幅以及这两个参数之间的耦合。对于超出此范围的$λ$的系统,特征频率与我们的数值设置中用作输入的已知自由测试值的频率有足够的差异,以使结果虽然收敛,但在物理上不可靠。这是$λ$的范围,其中自由标量场解决方案仍然是自我相互作用标量字段配置的良好近似值。我们的工作是黑洞周围自我相互作用的骨云的首次非扰动探索,在非线性政权中对此类系统产生了详细的新见解,同时还克服了技术挑战和量化限制。此外,我们的结果为完全动态的数值相对论模拟以及对旋转黑洞和真实标量场的未来探索提供了有用的输入。
We numerically investigate free and self-interacting ultralight scalar fields around black holes in General Relativity. We focus on complex scalar fields $Φ$ whose self-interactions are described by the quartic potential $V \propto λ|Φ|^4$, and ignore the black hole spin in order to disentangle the effects of self interactions on the boson cloud. Using the spectral solver Kadath, we compute quasi-equilibrium configurations of the dominant eigenstates, including their backreaction on the spacetime metric. For scenarios with $- 10^{-2} \lesssim λ\lesssim 10^{-2}$ we find the mass of the self-interacting scalar cloud to be up to $\sim 70\%$ larger than that of a free scalar cloud, though the additional backreaction effect on the spacetime metric is only up to $\sim 1\%$ due to the low-density nature of the bosonic configurations. In this region of parameter space we observe approximate quadratic scalings between the mass of the cloud with $λ$, the scalar field amplitude, and the couplings between these two parameters. For systems with $λ$ beyond this range, the eigenfrequencies differ sufficiently from the known free-test-field values used as inputs in our numerical setup to make the results, though convergent, physically unreliable. This bounds the range of $λ$ in which the free scalar field solution remains a good approximation to self-interacting scalar field configurations. Our work is among the first nonperturbative explorations of self-interacting bosonic clouds around black holes, yielding detailed new insights into such systems in the nonlinear regime, while also overcoming technical challenges and quantifying limitations. Additionally, our results provide useful inputs for fully dynamical numerical relativity simulations and for future explorations of spinning black holes and real scalar fields.