论文标题

超越SOT:一次跟踪多个通用对象

Beyond SOT: Tracking Multiple Generic Objects at Once

论文作者

Mayer, Christoph, Danelljan, Martin, Yang, Ming-Hsuan, Ferrari, Vittorio, Van Gool, Luc, Kuznetsova, Alina

论文摘要

通用对象跟踪(GOT)是跟踪目标对象的问题,该问题是通过视频的第一帧中的边界框指定的。尽管该任务在过去几十年中引起了很多关注,但研究人员几乎只专注于单个对象设置。多对象从更广泛的适用性中获得了好处,从而使其在现实世界应用中更具吸引力。我们将缺乏研究兴趣的问题归因于缺乏合适的基准。在这项工作中,我们引入了一个新的大规模获得的基准,Lagot,每个序列包含多个带注释的目标对象。我们的基准允许用户解决GOT中的剩余挑战,旨在通过同时跟踪多个对象来提高鲁棒性并减少计算。此外,我们提出了一个基于变压器的基线基线,能够通过共享计算进行多个对象的联合处理。与独立跟踪每个对象相比,我们的方法在10个并发对象的情况下实现了4倍的运行时间,并且在我们的新基准测试中胜过现有的单一对象跟踪器。此外,我们的方法在单对象上获得了高度竞争的结果,该结果获得了数据集,在TrackingNet上创造了新的最新技术,成功率为84.4%。我们的基准,代码和训练有素的模型将公开可用。

Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows users to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. In addition, we propose a transformer-based GOT tracker baseline capable of joint processing of multiple objects through shared computation. Our approach achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. In addition, our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源