论文标题
Gross-Neveu的费米亚障碍操作员和脱合量子危机
Fermion disorder operator at Gross-Neveu and deconfined quantum criticalities
论文作者
论文摘要
Fermion障碍操作员已显示出在1D Luttinger液体中揭示纠缠信息,以及在量子临界点(QCP)出现的2D Free and Froping Fermi和非芬特液体。在这里,我们通过大规模量子蒙特卡洛模拟研究,这是相关狄拉克系统中疾病操作员的缩放行为。我们首先证明了GN-NEVEU(GN)手性Ising和Heisenberg QCP的疾病算子的对数缩放行为,在其系数中,GN-QCP的一致保形场理论(CFT)含量一致。然后,我们研究了量子旋转厅绝缘子和超导体之间实现的2D单极无解的量子临界点(DQCP)。我们的数据指向对数系数的负值,以使DQCP与单一CFT不符。 1D DQCP模型上疾病算子的密度基质重新归一化组计算也检测出紧急的连续对称性。
The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points(QCP). Here we study, by means of large-scale quantum Monte Carlo simulation, the scaling behavior of disorder operator in correlated Dirac systems. We first demonstrate the logarithmic scaling behavior of the disorder operator at the Gross-Neveu (GN) chiral Ising and Heisenberg QCPs, where consistent conformal field theory (CFT) content of the GN-QCP in its coefficient is found. Then we study a 2D monopole free deconfined quantum critical point (DQCP) realized between a quantum-spin Hall insulator and a superconductor. Our data point to negative values of the logarithmic coefficients such that the DQCP does not correspond to a unitary CFT. Density matrix renormalization group calculations of the disorder operator on a 1D DQCP model also detect emergent continuous symmetries.