论文标题

BSAC-COEX:通过设备选择的URLLC和分布式学习服务的共存

BSAC-CoEx: Coexistence of URLLC and Distributed Learning Services via Device Selection

论文作者

Ganjalizadeh, Milad, Ghadikolaei, Hossein Shokri, Gündüz, Deniz, Petrova, Marina

论文摘要

从工业自动化到自动运输,分布式情报的最新进展在各种应用程序中取得了令人印象深刻的进步。但是,通过无线网络部署分布式学习服务构成了许多挑战。这些是由无线环境(例如随机通道波动),有限的资源(例如带宽和传输功率)以及网络上存在共存服务的固有不确定性引起的。在本文中,我们研究了一种混合服务方案,其中高优先级的低潜伏期通信(URLLC)和低优先级分布式学习服务同时通过网络运行。利用设备选择,我们旨在最大程度地减少分布式学习的收敛时间,同时满足URLLC服务的要求。我们将这个问题作为马尔可夫决策过程提出,并通过BSAC-COEX解决该问题,BSAC-COEX是基于分支机构软批评(BSAC)算法的框架,该算法通过参与者神经网络中的不同分支来确定每个设备的参与决策。我们使用符合工厂自动化用例的3GPP标准的现实模拟器来评估解决方案。我们的仿真结果证实,我们的解决方案可以大大减少分布式学习服务的训练延迟,同时使URLLC的可用性高于其所需的阈值,并靠近URLLC仅消耗所有无线资源的情况。

Recent advances in distributed intelligence have driven impressive progress across a diverse range of applications, from industrial automation to autonomous transportation. Nevertheless, deploying distributed learning services over wireless networks poses numerous challenges. These arise from inherent uncertainties in wireless environments (e.g., random channel fluctuations), limited resources (e.g., bandwidth and transmit power), and the presence of coexisting services on the network. In this paper, we investigate a mixed service scenario wherein high-priority ultra-reliable low latency communication (URLLC) and low-priority distributed learning services run concurrently over a network. Utilizing device selection, we aim to minimize the convergence time of distributed learning while simultaneously fulfilling the requirements of the URLLC service. We formulate this problem as a Markov decision process and address it via BSAC-CoEx, a framework based on the branching soft actor-critic (BSAC) algorithm that determines each device's participation decision through distinct branches in the actor's neural network. We evaluate our solution with a realistic simulator that is compliant with 3GPP standards for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delays of the distributed learning service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all wireless resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源