论文标题
微流体支柱阵列中的断裂对称性反映在多个长度尺度的流动DNA溶液中
Broken Symmetries in Microfluidic Pillar Arrays are Reflected in a Flowing DNA Solution across Multiple Length Scales
论文作者
论文摘要
与牛顿流体不同,粘弹性流体可能会打破雷诺数低的时间反转对称性,从而导致弹性。此外,在某些情况下,大规模的常规波形而不是混乱的湍流,如在微流体支柱阵列中流动的DNA所示。我们在这里演示了各个支柱的对称性如何影响这些波的对称性,从而有助于理解波的起源并开放以更好地控制波浪,并与微流体分类和混合等应用相关。波的发作发生在不同方向通过同一数组的不同方向上的Deborah数字出现。由于波的发作导致给定驾驶压力的流速增加,因此我们观察到在该范围内的置换性增加。
Unlike Newtonian fluids, viscoelastic fluids may break time-reversal symmetry at low Reynolds numbers resulting in elastic turbulence. Furthermore, under some conditions, instead of the chaotic turbulence, large-scale regular waves form, as has been shown for DNA flowing in microfluidic pillar arrays. We here demonstrate how the symmetry of the individual pillars influences the symmetry of these waves, thereby contributing to the understanding of the origin of the waves and opening up for better control of the waves with relevance to applications such as microfluidic sorting and mixing. The onset of waves occurs at different Deborah numbers for flow in different directions through the same array. Because the onset of waves leads to an increase in flow rate for a given driving pressure, we observe an increase in diodicity within this range.