论文标题

智能办公环境中的居民隐私感知,意识和偏好

Occupant Privacy Perception, Awareness, and Preferences in Smart Office Environments

论文作者

Li, Beatrice, Tavakoli, Arash, Heydarian, Arsalan

论文摘要

构建管理系统吹捧许多好处,例如能源效率和居住者舒适,但依靠来自各种传感器的大量数据。机器学习算法的进步使得在非侵入性传感器的预期设计之外提取有关乘员及其活动的个人信息是可能的。但是,居民没有被告知数据收集,并且具有不同的隐私偏好和隐私损失的门槛。尽管在智能家居中最了解隐私的看法和偏好,但有限的研究在智能办公楼中评估了这些因素,那里有更多的用户和不同的隐私风险。为了更好地了解居民的看法和隐私偏好,我们在2022年4月至2022年5月之间对智能办公大楼的居民进行了二十四个半结构化访谈。我们发现数据方式功能和个人功能有助于人们的隐私偏好。收集方式的功能定义了数据模式特征 - 空间,安全性和时间上下文。相比之下,个人功能包括对数据模式特征和数据推断,隐私和安全性的定义以及可用奖励和实用程序的认识。我们在智能办公楼中提出的人们对人们隐私偏好的模型有助于设计更有效的措施以改善人们的隐私。

Building management systems tout numerous benefits, such as energy efficiency and occupant comfort but rely on vast amounts of data from various sensors. Advancements in machine learning algorithms make it possible to extract personal information about occupants and their activities beyond the intended design of a non-intrusive sensor. However, occupants are not informed of data collection and possess different privacy preferences and thresholds for privacy loss. While privacy perceptions and preferences are most understood in smart homes, limited studies have evaluated these factors in smart office buildings, where there are more users and different privacy risks. To better understand occupants' perceptions and privacy preferences, we conducted twenty-four semi-structured interviews between April 2022 and May 2022 on occupants of a smart office building. We found that data modality features and personal features contribute to people's privacy preferences. The features of the collected modality define data modality features -- spatial, security, and temporal context. In contrast, personal features consist of one's awareness of data modality features and data inferences, definitions of privacy and security, and the available rewards and utility. Our proposed model of people's privacy preferences in smart office buildings helps design more effective measures to improve people's privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源