论文标题
共鸣键状态的可分离性和纠缠
Separability and entanglement of resonating valence-bond states
论文作者
论文摘要
我们研究了Rokhsar-Kivelson(RK)州和共鸣价键(RVB)状态的可分离性和纠缠。这些状态在凝聚的物理学中起着重要的作用,因为它们可以根据其基础晶格来描述量子自旋液体和物质的量子关键状态。对于二聚体RK状态在任意易于图表上,我们证明了$ k $断开连接子系统的降低密度矩阵的确切可分离性,这意味着子系统之间没有双分部分和多部分纠缠。对于具有局部约束的更通用的RK状态,我们认为在热力学极限中的分离性,并表明任何局部RK状态都具有零对数负性,即使密度矩阵不能完全分离。在相邻子系统的情况下,我们根据基础统计模型的分区函数找到了对数负性的精确表达。对于RVB状态,我们显示了分离的子系统的可分离性,直至子系统之间的距离$ d $中的小条款,并且对数否定性被$ d $成倍压制。我们认为,即使对于任意小比例$ d/l $,$ l $也是子系统的特征大小,即使是任意小比例$ d/l $也是如此。我们的结果适用于任意晶格,并涵盖了一大批RK和RVB状态,其中包括某些宽大的量子自旋液体和无间隙量子关键系统。
We investigate separability and entanglement of Rokhsar-Kivelson (RK) states and resonating valence-bond (RVB) states. These states play a prominent role in condensed matter physics, as they can describe quantum spin liquids and quantum critical states of matter, depending on their underlying lattices. For dimer RK states on arbitrary tileable graphs, we prove the exact separability of the reduced density matrix of $k$ disconnected subsystems, implying the absence of bipartite and multipartite entanglement between the subsystems. For more general RK states with local constraints, we argue separability in the thermodynamic limit, and show that any local RK state has zero logarithmic negativity, even if the density matrix is not exactly separable. In the case of adjacent subsystems, we find an exact expression for the logarithmic negativity in terms of partition functions of the underlying statistical model. For RVB states, we show separability for disconnected subsystems up to exponentially small terms in the distance $d$ between the subsystems, and that the logarithmic negativity is exponentially suppressed with $d$. We argue that separability does hold in the scaling limit, even for arbitrarily small ratio $d/L$, where $L$ is the characteristic size of the subsystems. Our results hold for arbitrary lattices, and encompass a large class of RK and RVB states, which include certain gapped quantum spin liquids and gapless quantum critical systems.