论文标题

旨在概括范德沃登(Van der Waerden

Towards a generalization of the van der Waerden's conjecture for Sn-polynomials with integral coefficients over a fixed number field extension

论文作者

Viglino, Ilaria

论文摘要

Van der Waerden的猜想指出,Monic Integer polyenomials $ f(x)$ $ n $的$ \ Mathscr {p} _ {n,n,n,n}^0(\ Mathbb {q})$ $ n $ $ n $的$ f(x)$ n $,带有高度$ \ le n $,以使galois $ g_ g_ math of galois $ g_ { $ k_f/\ mathbb {q} $是完整的对称组,具有订单$ | \ Mathscr {p} _ {n,n,n}^0(\ Mathbb {q})| =(2n)^n+o_n(n+o_n(n^n-1})$ as $ n \ rightarrow+firtarrow+\ fifty $ \ fyfty $。 Van der Waerden,Chow和Dietmann先前已经针对立方和四分之一的多项式显示了猜想。随后,巴尔加瓦以$ n \ ge6 $证明了这一点。在本文中,我们概括了在代数整数中具有系数的多项式的结果,该固定有限扩展名的$ k/\ mathbb {q} $ $ d $的固定有限扩展名的$ \ mathcal {o} _k $,对于某些$ n $ n $和$ d $。

The van der Waerden's Conjecture states that the set $\mathscr{P}_{n,N}^0(\mathbb{Q})$ of monic integer polynomials $f(X)$ of degree $n$, with height $\le N$ such that the Galois group $G_{K_f/\mathbb{Q}}$ of the splitting field $K_f/\mathbb{Q}$ is the full symmetric group, has order $|\mathscr{P}_{n,N}^0(\mathbb{Q})|=(2N)^n+O_n(N^{n-1})$ as $N\rightarrow+\infty$. The conjecture has been shown previously for cubic and quartics polynomials by van der Waerden, Chow and Dietmann. Subsequently, Bhargava proved it for $n\ge6$. In this paper, we generalize the result for polynomials with coefficients in the ring of algebraic integers $\mathcal{O}_K$ of a fixed finite extension $K/\mathbb{Q}$ of degree $d$, for some values of $n$ and $d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源