论文标题

TXALLO:碎块链系统中的动态交易分配

TxAllo: Dynamic Transaction Allocation in Sharded Blockchain Systems

论文作者

Zhang, Yuanzhe, Pan, Shirui, Yu, Jiangshan

论文摘要

可伸缩性问题一直是限制采用区块链的最重要的障碍之一。区块链分解是解决此问题的一种有前途的方法。但是,碎片机制引入了大量的跨碎交易,这些交易价格昂贵。 本文重点介绍了交易分配问题,以减少跨分割交易的数量以提高可扩展性。特别是,我们系统地制定了交易分配问题,并将其转换为图表上的社区检测问题。提出了确定性和快速分配方案Txallo,以动态地推断帐户及其相关交易的分配。它直接考虑了系统吞吐量,考虑到跨碎片交易的数量和碎片之间的工作量余额。 我们评估了TXALLO在包含超过9100万笔交易的以太坊数据集上的性能。我们的评估结果表明,对于具有60个碎片的区块链,Txallo将交叉碎片交易比率从98%(通过使用传统的基于哈希的分配)降低到约12%。同时,工作量余额得到很好的维护。与其他方法相比,txallo的执行时间几乎可以忽略不计。例如,当每小时更新分配时,TXALLO的执行平均仅需0.5秒,而其他并发工作(例如BrokerChain(InfoCom'22))利用经典METIS方法需要422秒。

The scalability problem has been one of the most significant barriers limiting the adoption of blockchains. Blockchain sharding is a promising approach to this problem. However, the sharding mechanism introduces a significant number of cross-shard transactions, which are expensive to process. This paper focuses on the transaction allocation problem to reduce the number of cross-shard transactions for better scalability. In particular, we systematically formulate the transaction allocation problem and convert it to the community detection problem on a graph. A deterministic and fast allocation scheme TxAllo is proposed to dynamically infer the allocation of accounts and their associated transactions. It directly optimizes the system throughput, considering both the number of cross-shard transactions and the workload balance among shards. We evaluate the performance of TxAllo on an Ethereum dataset containing over 91 million transactions. Our evaluation results show that for a blockchain with 60 shards, TxAllo reduces the cross-shard transaction ratio from 98% (by using traditional hash-based allocation) to about 12%. In the meantime, the workload balance is well maintained. Compared with other methods, the execution time of TxAllo is almost negligible. For example, when updating the allocation every hour, the execution of TxAllo only takes 0.5 seconds on average, whereas other concurrent works, such as BrokerChain (INFOCOM'22) leveraging the classic METIS method, require 422 seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源