论文标题
分散关系和波动方程的椭圆性衰减介质的波动方程
Dispersion relation and wave equation for attenuative elliptically anisotropic media
论文作者
论文摘要
椭圆形各向异性培养基中的P波延迟和群速表面是椭圆形的。椭圆形各向异性方便地用作旨在解决横向各向同性(TI)的P-波波传播问题的扰动方法中的参考培养基。在这里,我们使椭圆性各向异性Ti模型减弱,并讨论相应的P-波散性关系和波动方程。我们的分析在Thomsen-Type参数方面导致了两个条件,这些条件确保P波慢表面和分散关系满足椭圆方程。我们还获得了这种椭圆形各向异性介质的粘膜波方程,并使用对应原理解决了点源辐射。数值示例验证了所提出的椭圆形条件,并说明了衰减椭圆形模型中p波菲尔德的行为。
The P-wave slowness and group-velocity surfaces in elliptically anisotropic media are ellipsoids. Elliptical anisotropy is convenient to use as the reference medium in perturbation methods designed to solve P-wave wave-propagation problems for transverse isotropy (TI). Here, we make the elliptically anisotropic TI model attenuative and discuss the corresponding P-wave dispersion relation and the wave equation. Our analysis leads to two conditions in terms of the Thomsen-type parameters, which guarantee that the P-wave slowness surface and the dispersion relation satisfy elliptical equations. We also obtain the viscoacoustic wave equation for such elliptically anisotropic media and solve it for point-source radiation using the correspondence principle. Numerical examples validate the proposed elliptical conditions and illustrate the behavior of the P-wavefield in attenuative elliptical TI models.