论文标题
4个manifolds,拓扑模块形式和$ 6D \ \ \ \ \ \ Mathcal {n} =(1,0)$理论的光纤总和公式
Fiber sum formulas for 4-manifolds, topological modular forms and $6d\ \mathcal{N}=(1,0)$ theories
论文作者
论文摘要
使用六个维度方法中的四个歧管和拓扑模块形式(TMF)之间的关系,我们展示了纤维总和公式,用于无限的光滑自旋家族的四种与自由和相互作用的6D(1,0)SCFT相关的相关的四个歧管。我们发现,即使是自由理论也具有非平凡的纤维总和公式,它们的形式对四个manifolds的个体理论和参数敏感。此外,我们通过扩大证据来增强Stolz和Teichner的猜想。
Using the relation between four manifolds and topological modular form (TMF) from the six dimensional approach, we exhibit fiber sum formulas for infinite families of smooth spin four manifolds associated to compactifications of free and interacting 6d (1,0) SCFTs. We find that even the free theories have nontrivial fiber sum formulas and their forms are sensitive to an individual theory and parameters of four-manifolds. Furthermore, we reinforce the conjecture of Stolz and Teichner by expanding its evidence.