论文标题
旨在探索具有热纯量子状态的量子计算机上量规理论的相图
Toward Exploring Phase Diagrams of Gauge Theories on Quantum Computers with Thermal Pure Quantum States
论文作者
论文摘要
为了在经典的蒙特卡洛方法中探索臭名昭著的符号问题,用于晶格量子染色体动力学,我们提出了一种以非零密度计算有限的量化晶格计算的量子计算方法。基于统计力学的热量子状态形式,当扩展到量表理论系统时,我们的方法允许对热期望值和非等量时间相关函数进行无标志问题的量子计算。通过采用一个简单的晶格规程理论,可以为经典基准测试,即$ \ mathbb {z} _2 $ lattice量规理论,在有限化学势的1+1维中,我们讨论了对算法和硬件缺陷的资源需求和稳健性,以实现近期量定量化软件的现实情况。
Aiming at evading the notorious sign problem in classical Monte-Carlo approaches to lattice quantum chromodynamics, we present an approach for quantum computing finite-temperature lattice gauge theories at non-zero density. Based on the thermal pure-quantum-state formalism of statistical mechanics when extended to gauge-theory systems, our approach allows for sign-problem-free quantum computations of thermal expectation values and non-equal time correlation functions. By taking a simple lattice gauge theory for which classical benchmarks are possible, namely $\mathbb{Z}_2$ lattice gauge theory in 1+1 dimensions at finite chemical potential, we discuss resource requirements and robustness to algorithmic and hardware imperfections for near-term quantum-hardware realizations.