论文标题

书面故事中的自动情感建模

Automatic Emotion Modelling in Written Stories

论文作者

Christ, Lukas, Amiriparian, Shahin, Milling, Manuel, Aslan, Ilhan, Schuller, Björn W.

论文摘要

讲故事是人类交流的组成部分,可以唤起情绪并影响听众的情感状态。因此,在故事中自动建模情绪轨迹引起了极大的学术兴趣。但是,由于大多数现有作品仅限于无监督的基于词典的方法,因此该任务没有标记的基准标记。我们通过引入连续价和唤醒注释来解决这一差距,以介绍带有离散情绪类别注释的儿童故事数据集。我们收集此数据的其他注释,并将最初的分类标签映射到价和唤醒空间。利用自然语言处理的最新进展,我们提出了一组基于变压器的新型方法,用于在书面故事的过程中预测价和唤醒信号。我们探索了几种微调预贴的电气模型的策略,并研究了在推断句子情绪时考虑句子上下文的好处。此外,我们尝试了其他LSTM和变压器层。最佳配置可在测试集中实现一致性相关系数(CCC)为.7338,唤醒的唤醒为.6302,这证明了我们提出的方法的适用性。我们的代码和其他注释可从https://github.com/lc0197/emotion_modelling_stories提供。

Telling stories is an integral part of human communication which can evoke emotions and influence the affective states of the audience. Automatically modelling emotional trajectories in stories has thus attracted considerable scholarly interest. However, as most existing works have been limited to unsupervised dictionary-based approaches, there is no labelled benchmark for this task. We address this gap by introducing continuous valence and arousal annotations for an existing dataset of children's stories annotated with discrete emotion categories. We collect additional annotations for this data and map the originally categorical labels to the valence and arousal space. Leveraging recent advances in Natural Language Processing, we propose a set of novel Transformer-based methods for predicting valence and arousal signals over the course of written stories. We explore several strategies for fine-tuning a pretrained ELECTRA model and study the benefits of considering a sentence's context when inferring its emotionality. Moreover, we experiment with additional LSTM and Transformer layers. The best configuration achieves a Concordance Correlation Coefficient (CCC) of .7338 for valence and .6302 for arousal on the test set, demonstrating the suitability of our proposed approach. Our code and additional annotations are made available at https://github.com/lc0197/emotion_modelling_stories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源