论文标题
多域内窥镜图像中半监督膀胱组织分类
Semi-supervised Bladder Tissue Classification in Multi-Domain Endoscopic Images
论文作者
论文摘要
目的:在膀胱肿瘤(TURBT)手术过程中膀胱组织的准确视觉分类对于改善早期癌症诊断和治疗至关重要。在TurbT干预期间,使用白光成像(WLI)和窄带成像(NBI)技术用于病变检测。每种成像技术都提供不同的视觉信息,使临床医生可以识别和分类癌变。使用两种成像技术的计算机视觉方法可以改善内窥镜诊断。当仅在一个域中,在我们的情况下,在一个域中可用注释时,我们将解决组织分类的挑战,并且内窥镜图像对应于未配对的数据集,即NBI和WLI域中的每个图像都没有确切的等效物。方法:我们提出了一个由三个主要组成部分组成的半激动的生成对抗网络(GAN)的方法:在标记的WLI数据上训练的教师网络;循环一致性gan执行未配对的图像到图像翻译和多输入学生网络。为了确保所提出的GAN产生的合成图像的质量,我们在专家的帮助下进行了详细的定量和定性分析。结论:通过提出的组织分类方法获得的总体平均分类精度,精度和召回率分别为0.90、0.88和0.89,而在未标记的域(NBI)中获得的相同指标分别为0.92、0.64和0.94。生成的图像的质量足以欺骗专家。意义:这项研究表明,当注释在多域数据中受到限制时,使用半监督GAN基于GAN的膀胱组织分类的潜力。该数据集可从https://zenodo.org/record/7741476#.zbquk7tmj6k获得
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based bladder tissue classification when annotations are limited in multi-domain data. The dataset is available at https://zenodo.org/record/7741476#.ZBQUK7TMJ6k