论文标题

质子治疗中基于机器学习的剂量验证框架的生物冲洗和深度选择的敏感性分析

Sensitivity analysis of biological washout and depth selection for a machine learning based dose verification framework in proton therapy

论文作者

Yu, Shixiong, Liu, Yuxiang, Hu, Zongsheng, Zhang, Haozhao, Qi, Pengyu, Peng, Hao

论文摘要

基于质子引起的正电子发射器的剂量验证是一种有希望的质量保证工具,可以利用人工智能的强度。为了使迈向实际应用,需要对两个因素进行灵敏度分析:生物冲洗和深度选择。选择。开发了双向复发性神经网络(RNN)模型。训练数据集是基于基于CT图像的幻影(腹部区域)和多束能量/途径生成的,该数据集使用蒙特卡罗模拟(1 mM空间分辨率,无生物清洗)生成。对于生物冲洗的建模,将简化的分析模型应用于5分钟的时间内改变原始活动曲线,并结合物理衰减和生物冲洗量。为了研究深度选择的研究(与多场/角度照射有关的挑战),以不同的窗口长度(100、125、150 mm)应用截断,以对原始活动曲线进行。最后,通过结合两个因素(深度选择:125毫米,生物冲洗:5分钟)来检查最坏情况的性能。根据范围不确定性,平均绝对误差(MAE)和平均相对误差(MRE)对精度进行定量评估。我们提出的AI框架对与两个因素相关的扰动表现出良好的免疫力。质子引起的正电子发射器的检测与机器学习相结合,具有在质子治疗中实施在线患者特定验证的巨大潜力。

Dose verification based on proton-induced positron emitters is a promising quality assurance tool and may leverage the strength of artificial intelligence. To move a step closer towards practical application, the sensitivity analysis of two factors needs to be performed: biological washout and depth selection. selection. A bi-directional recurrent neural network (RNN) model was developed. The training dataset was generated based upon a CT image-based phantom (abdomen region) and multiple beam energies/pathways, using Monte-Carlo simulation (1 mm spatial resolution, no biological washout). For the modeling of biological washout, a simplified analytical model was applied to change raw activity profiles over a period of 5 minutes, incorporating both physical decay and biological washout. For the study of depth selection (a challenge linked to multi field/angle irradiation), truncations were applied at different window lengths (100, 125, 150 mm) to raw activity profiles. Finally, the performance of a worst-case scenario was examined by combining both factors (depth selection: 125 mm, biological washout: 5 mins). The accuracy was quantitatively evaluated in terms of range uncertainty, mean absolute error (MAE) and mean relative errors (MRE). Our proposed AI framework shows good immunity to the perturbation associated with two factors. The detection of proton-induced positron emitters, combined with machine learning, has great potential to implement online patient-specific verification in proton therapy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源