论文标题

最佳周期包含$ k $ dimensional hypercube的所有节点

Optimal cycles enclosing all the nodes of a $k$-dimensional hypercube

论文作者

Rinaldi, Roberto, Ripà, Marco

论文摘要

我们通过使用具有最小链接的多边形链来访问$ k $二维超模的所有$ 2^k $节点的总体问题,我们表明此最佳值由$ h(2,k)给出:= 3 \ cdot 2^{k-2^{k-2} $ if and if $ k \ in \ in \ in \ nath \ n n \ n n \ n} $ n} $} 0,000,1-0.此外,对于上一个上述所有上述节点,$ h(2,k):= \ {\ {0,1 \} \} \ times \ {0,1 \} \ times \ times \ dips \ dips \ dips \ {0,11 \ {0,11 \} \ \ Mathbb {r}^k $,具有一个周期(即封闭路径),只有$ 3 \ cdot 2^{k-2} $链接。

We solve the general problem of visiting all the $2^k$ nodes of a $k$-dimensional hypercube by using a polygonal chain that has minimum link-length, and we show that this optimal value is given by $h(2,k):=3 \cdot 2^{k-2}$ if and only if $k \in \mathbb{N}-\{0,1\}$. Furthermore, for any $k$ above one, we constructively prove that it is possible to visit once and only once all the aforementioned nodes, $H(2,k):=\{\{0,1\} \times \{0,1\} \times \dots \times \{0,1\}\} \subset \mathbb{R}^k$, with a cycle (i.e., a closed path) having only $3 \cdot 2^{k-2}$ links.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源