论文标题
使用深厚的增强学习,在软件定义的WAN中选择强大的路径
Robust Path Selection in Software-defined WANs using Deep Reinforcement Learning
论文作者
论文摘要
在有效的网络流量工程过程的上下文中,网络连续测量新的流量矩阵并更新网络中的路径集,需要一个自动化的过程才能快速有效地确定应使用何时以及应该使用什么集。不幸的是,在每个给定时间间隔中找到最佳解决方案的最佳解决方案的负担很高,因为随着网络的大小的增加,使用线性编程的优化方法的计算复杂性大大增加。在本文中,我们使用深度加固学习来得出数据驱动的算法,该算法考虑了路由计算和路径更新的开销,该算法在网络中进行路径选择。我们提出的方案利用有关过去网络行为的信息来确定一组可用于多个未来时间间隔的强大路径,以避免经常更新路由器的转发行为的开销。我们通过跨实际网络拓扑的大量模拟将方法的结果与其他交通工程解决方案进行了比较。我们的结果表明,与传统TE方案(例如ECMP)相比,我们的方案在降低链路利用方面的票价远高达40%。与仅最大程度减少链接利用率并且不关心路径更新开销的方案相比,我们的计划提供了更高的链接利用率(约25%)。
In the context of an efficient network traffic engineering process where the network continuously measures a new traffic matrix and updates the set of paths in the network, an automated process is required to quickly and efficiently identify when and what set of paths should be used. Unfortunately, the burden of finding the optimal solution for the network updating process in each given time interval is high since the computation complexity of optimization approaches using linear programming increases significantly as the size of the network increases. In this paper, we use deep reinforcement learning to derive a data-driven algorithm that does the path selection in the network considering the overhead of route computation and path updates. Our proposed scheme leverages information about past network behavior to identify a set of robust paths to be used for multiple future time intervals to avoid the overhead of updating the forwarding behavior of routers frequently. We compare the results of our approach to other traffic engineering solutions through extensive simulations across real network topologies. Our results demonstrate that our scheme fares well by a factor of 40% with respect to reducing link utilization compared to traditional TE schemes such as ECMP. Our scheme provides a slightly higher link utilization (around 25%) compared to schemes that only minimize link utilization and do not care about path updating overhead.