论文标题
非渗透性可分离性的资源理论
Resource Theory of Non-absolute Separability
论文作者
论文摘要
我们为不可分割的国家(非AS)开发了一种资源理论,在该状态下,绝对可分离的状态(AS)被任何全球一级人士纠缠不清是自由状态,并且可以在不产生任何代价的情况下执行全球统一操作的任何凸混合物。我们采用两种方法来量化非渗透性可分离性(NAS) - 一种基于距离措施,另一种是通过使用证人操作员。我们证明,这两种NA都衡量了所有应遵循的条件``好''NAS度量。我们证明,对于固定尺寸,所有纯状态下的NAS含量是相等且最大的。然后,我们在基于距离的NAS度量与纠缠量词之间建立联系。我们用一类非国家(即沃纳国家)来说明我们的结果。
We develop a resource theory for non-absolutely separable states (non-AS) in which absolutely separable states (AS) that cannot be entangled by any global unitaries are recognised as free states and any convex mixture of global unitary operations can be performed without incurring any costs. We employ two approaches to quantify non-absolute separability (NAS) -- one based on distance measures and the other one through the use of a witness operator. We prove that both the NAS measures obey all the conditions which should be followed by a ``good'' NAS measure. We demonstrate that NAS content is equal and maximal in all pure states for a fixed dimension. We then establish a connection between the distance-based NAS measure and the entanglement quantifier. We illustrate our results with a class of non-AS states, namely Werner states.