论文标题
时空极端的模式
Patterns in Spatio-Temporal Extremes
论文作者
论文摘要
在环境科学应用中,极端事件经常表现出复杂的时空结构,这种结构很难使用最先进的参数极值模型以一种计算有效的方式灵活地描述和估计。在本文中,我们提出了一种计算廉价的非参数方法,以研究空间极端的时间簇的概率分布,并就各种特征进行研究内模式。其中包括描述整个事件幅度的风险功能,空间风险度量(例如受影响区域的大小)以及代表极端事件位置的措施。在功能规则变化的框架下,我们验证了相应的极限分布的存在,因为所考虑的事件变得越来越极端。此外,我们为限制感兴趣的表达式开发了非参数估计量,并在适当的混合条件下显示其渐近正态性。使用乘数块引导程序评估不确定性。在时空模拟的示例中,证明了我们估计器的有限样本行为和引导程序。然后,我们的方法用于研究南部红海高维海面温度数据的时空依赖性结构。我们的分析揭示了对时间持久性的新见解,以及该地区极端海温事件的复杂流体动力模式。
In environmental science applications, extreme events frequently exhibit a complex spatio-temporal structure, which is difficult to describe flexibly and estimate in a computationally efficient way using state-of-art parametric extreme-value models. In this paper, we propose a computationally-cheap non-parametric approach to investigate the probability distribution of temporal clusters of spatial extremes, and study within-cluster patterns with respect to various characteristics. These include risk functionals describing the overall event magnitude, spatial risk measures such as the size of the affected area, and measures representing the location of the extreme event. Under the framework of functional regular variation, we verify the existence of the corresponding limit distributions as the considered events become increasingly extreme. Furthermore, we develop non-parametric estimators for the limiting expressions of interest and show their asymptotic normality under appropriate mixing conditions. Uncertainty is assessed using a multiplier block bootstrap. The finite-sample behavior of our estimators and the bootstrap scheme is demonstrated in a spatio-temporal simulated example. Our methodology is then applied to study the spatio-temporal dependence structure of high-dimensional sea surface temperature data for the southern Red Sea. Our analysis reveals new insights into the temporal persistence, and the complex hydrodynamic patterns of extreme sea temperature events in this region.