论文标题
注意动漫线绘图着色
Attention-Aware Anime Line Drawing Colorization
论文作者
论文摘要
近年来,动漫系列绘图的自动着色引起了人们的关注,因为它可以实质上使动画行业受益。基于用户的方法是线条绘图着色的主流方法,而基于参考的方法则提供了一种更直观的方法。然而,尽管基于参考的方法可以改善参考图像和线图的特征聚合,但在颜色一致性或语义对应关系方面,着色结果并不令人信服。在本文中,我们介绍了一个基于注意力的动漫线绘制色彩的模型,其中使用频道和空间卷积注意模块来提高编码器对特征提取和关键领域感知的能力,以及使用交叉意见和自我注意力来解决交叉依赖的长期依赖性问题。广泛的实验表明,我们的方法的表现优于其他SOTA方法,具有更准确的线结构和语义颜色信息。
Automatic colorization of anime line drawing has attracted much attention in recent years since it can substantially benefit the animation industry. User-hint based methods are the mainstream approach for line drawing colorization, while reference-based methods offer a more intuitive approach. Nevertheless, although reference-based methods can improve feature aggregation of the reference image and the line drawing, the colorization results are not compelling in terms of color consistency or semantic correspondence. In this paper, we introduce an attention-based model for anime line drawing colorization, in which a channel-wise and spatial-wise Convolutional Attention module is used to improve the ability of the encoder for feature extraction and key area perception, and a Stop-Gradient Attention module with cross-attention and self-attention is used to tackle the cross-domain long-range dependency problem. Extensive experiments show that our method outperforms other SOTA methods, with more accurate line structure and semantic color information.