论文标题
语言模型作为归纳推理者
Language Models as Inductive Reasoners
论文作者
论文摘要
归纳推理是人类智力的核心组成部分。在过去对计算机科学中的归纳推理的研究中,形式语言被用作知识的表示(更具体地说)。但是,正式语言可能会引起系统性问题的归纳推理,例如处理原始输入的残疾,例如自然语言,对标签数据错误的敏感性以及无法处理模棱两可的输入。为此,我们提出了一个新的范式(任务),用于归纳推理,即从自然语言事实中诱导自然语言规则,并创建一个被称为鹿的数据集,其中包含1.2k规则 - 法则对该任务的对,其中规则和事实是用自然语言编写的。还提出了新的自动指标,并分析了该任务的评估。借助鹿,我们研究了一种现代的归纳推理方法,我们将自然语言用作知识而不是形式语言的表示,并将验证的语言模型用作“推理者”。此外,我们提供了第一个全面的分析,该分析对审慎的语言模型如何诱导自然语言事实诱导自然语言规则。我们还提出了一个从哲学文献中绘制的新框架,以了解这项任务,我们在实验部分中显示了超过自动和人类评估中基线的一部分。我们在第7节中讨论了我们对归纳推理的未来观点。数据集和代码可从https://github.com/zongliny/inductive_reasoning获得。
Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.