论文标题

对基于混合的数据增强的调查:分类法,方法,应用和解释性

A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability

论文作者

Cao, Chengtai, Zhou, Fan, Dai, Yurou, Wang, Jianping, Zhang, Kunpeng

论文摘要

在现代机器学习和深层神经网络中,数据增强(DA)是必不可少的。 DA的基本思想是构建新的培训数据,以通过添加略有干扰的现有数据或合成新数据来改善模型的概括。这项调查全面回顾了DA技术的关键子集,即基于混合的数据增强(MIXDA),该数据通过组合多个示例来生成新样本。与在单个样本或整个数据集上运行的传统DA方法相反,MixDA由于其有效性,简单性,灵活性,计算效率,理论基础和广泛的适用性而脱颖而出。我们首先引入一种新的分类法,该分类法将MixDA分类为基于混合的基于CutMix的方法,并基于数据混合操作的层次观点。随后,我们对各种MixDA技术进行了深入的评论,重点是它们的基本动机。由于其多功能性,MixDA渗透了广泛的应用,我们在本次调查中也对此进行了彻底研究。此外,我们通过检查模型概括和校准的影响,同时通过分析MixDA的固有特性来提供对模型行为的见解,从而深入研究MixDA有效性的潜在机制。最后,我们概述了当前MixDA研究的关键发现和基本挑战,同时概述了未来工作的潜在方向。与以前关注特定领域(例如CV和NLP)中DA方法的相关调查不同,或者仅审查了MixDA研究的有限子集,我们是第一个提供对MixDA的系统调查,涵盖其分类学,方法,应用和解释性。此外,我们为对这个令人兴奋的领域感兴趣的研究人员提供了有希望的指示。

Data augmentation (DA) is indispensable in modern machine learning and deep neural networks. The basic idea of DA is to construct new training data to improve the model's generalization by adding slightly disturbed versions of existing data or synthesizing new data. This survey comprehensively reviews a crucial subset of DA techniques, namely Mix-based Data Augmentation (MixDA), which generates novel samples by combining multiple examples. In contrast to traditional DA approaches that operate on single samples or entire datasets, MixDA stands out due to its effectiveness, simplicity, flexibility, computational efficiency, theoretical foundation, and broad applicability. We begin by introducing a novel taxonomy that categorizes MixDA into Mixup-based, Cutmix-based, and mixture approaches based on a hierarchical perspective of the data mixing operation. Subsequently, we provide an in-depth review of various MixDA techniques, focusing on their underlying motivations. Owing to its versatility, MixDA has penetrated a wide range of applications, which we also thoroughly investigate in this survey. Moreover, we delve into the underlying mechanisms of MixDA's effectiveness by examining its impact on model generalization and calibration while providing insights into the model's behavior by analyzing the inherent properties of MixDA. Finally, we recapitulate the critical findings and fundamental challenges of current MixDA studies while outlining the potential directions for future works. Different from previous related surveys that focus on DA approaches in specific domains (e.g., CV and NLP) or only review a limited subset of MixDA studies, we are the first to provide a systematical survey of MixDA, covering its taxonomy, methodology, application, and explainability. Furthermore, we provide promising directions for researchers interested in this exciting area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源