论文标题

在素数之间的平方距离上

On the mean square gap between primes

论文作者

Stadlmann, Julia

论文摘要

我们证明,对于任何固定的$ \ varepsilon> 0 $,我们的连续素数之间的平均差异平均大小为$ o(x^{0.23+ \ varepsilon})$。这取决于Peck的结果,Peck给出了$ O(x^{0.25+ \ varepsilon})$,以取代$ o(x^{0.23+ \ varepsilon})$。关键成分是Harman的筛子,Heath-Brown的平均值定理,用于稀疏的Dirichlet多项式和Heath-Brown的$ r^*$结合。

We prove that the average size of the squares of differences between consecutive primes less than $x$ is $O(x^{0.23+\varepsilon})$ for any fixed $\varepsilon>0$. This improves on a result of Peck, who gave bound $O(x^{0.25+\varepsilon})$ in the place of $O(x^{0.23+\varepsilon})$. Key ingredients are Harman's sieve, Heath-Brown's mean value theorem for sparse Dirichlet polynomials and Heath-Brown's $R^*$ bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源