论文标题

张量的加权摩尔 - 柔性的数值范围

Numerical range for weighted Moore-Penrose inverse of tensor

论文作者

Be, Aaisha, Shekhar, Vaibhav, Mishra, Debasisha

论文摘要

本文首先介绍了通过爱因斯坦产品的张量的加权奇异值分解(WSVD)的概念。然后使用WSVD来计算任意订单张量的加权摩尔 - 柔性倒数。然后,我们为均衡的平方张量和加权张量标准定义了加权正常张量的概念。最后,我们将其应用于研究数值范围的理论,用于加权的摩尔 - 碳纤维的均匀平方张量,并利用其几种特性。我们还将在矩阵设置中获得一些新的结果,这些结果将一些现有结果概括为特定情况。

This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in the matrix setting that generalizes some of the existing results as particular cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源