论文标题
关于固定解决方案对一类MATHIEU型方程的稳健稳定性
On the robust stability of stationary solutions to a class of Mathieu-type equations
论文作者
论文摘要
我们考虑使用参数的第二阶的非线性普通微分方程。我们建立了零溶液在渐近稳定的方程系数的扰动条件。获得了零溶液的吸引力集的估计值和无穷大溶液稳定率的估计值。使用这些结果,证明了有关固定溶液稳健稳定性的定理。
We consider a class of nonlinear ordinary differential equations of the second order with parameters. We establish conditions for perturbations of the coefficients of the equation under which the zero solution is asymptotically stable. Estimates for attraction sets of the zero solution and estimates of the stabilization rate of solutions at infinity are obtained. Using these results, theorems on the robust stability of stationary solutions are proven.