论文标题
学习排名
Learning List-Level Domain-Invariant Representations for Ranking
论文作者
论文摘要
域的适应性旨在将(数据丰富)源域中学到的知识转移到(低资源)目标域,而流行的方法是不变的表示学习,它与特征空间上的数据分布匹配并对齐。尽管该方法进行了广泛的研究并应用于分类和回归问题,但其对排名问题的采用是零星的,而现有的少数现有实现缺乏理论上的理由。本文重新审视了排名的不变表示学习。在审查了先前的工作后,我们发现他们实施了我们所谓的项目级对齐,这使得从总体中排名的项目分布保持一致,但忽略了其列表结构。但是,应该利用列表结构,因为它在排名问题和指标是在列表上定义和计算的,而不是本身的项目。为了结束这一差异,我们提出了列表级对齐方式 - 列表较高级别的学习域不变表示。好处是双重的:它导致了第一个域的适应性概括,而对拟议方法的理论支持又提供了理论支持,并且可以在包括通过reranking在内的排名任务上实现无监督的域适应性的经验转移绩效。
Domain adaptation aims to transfer the knowledge learned on (data-rich) source domains to (low-resource) target domains, and a popular method is invariant representation learning, which matches and aligns the data distributions on the feature space. Although this method is studied extensively and applied on classification and regression problems, its adoption on ranking problems is sporadic, and the few existing implementations lack theoretical justifications. This paper revisits invariant representation learning for ranking. Upon reviewing prior work, we found that they implement what we call item-level alignment, which aligns the distributions of the items being ranked from all lists in aggregate but ignores their list structure. However, the list structure should be leveraged, because it is intrinsic to ranking problems where the data and the metrics are defined and computed on lists, not the items by themselves. To close this discrepancy, we propose list-level alignment -- learning domain-invariant representations at the higher level of lists. The benefits are twofold: it leads to the first domain adaptation generalization bound for ranking, in turn providing theoretical support for the proposed method, and it achieves better empirical transfer performance for unsupervised domain adaptation on ranking tasks, including passage reranking.