论文标题
准周期跳跃对安德森本地化的镶嵌调制时期的奇数效应在一维晶格模型中
The odd-even effect of mosaic modulation period of quasi-periodic hopping on the Anderson localization in a one-dimensional lattice model
论文作者
论文摘要
在这项研究中,我们调查了安德森在一个一维晶格中的定位,并带有镶嵌异构的准膜跳跃。我们的发现表明,零能量状态的定位行为高度依赖于马赛克调制期的奇偶校验,称为$κ$。具体而言,当$κ$是一个奇怪的整数时,即使对于大型的准二元跳跃强度,也没有安德森本地化过渡,而零能量状态仍然处于危急状态。另一方面,对于什至$κ$和通用的准膜跳跃,零能量状态成为系统左或右端的局部边缘状态。此外,我们观察到能量谱的几何平均值等于偶数$κ$的持续跳跃,而对于奇数$κ$,它等于跳跃的几何平均值。镶嵌时期的这种奇数效应也延伸到零能量附近的其他征态。更具体地说,对于一个奇怪的$κ$,存在一个能量窗口,即使对于强烈的准隔离跳跃,本征态仍然至关重要。相比之下,对于甚至$κ$,随着跳跃强度的提高,安德森本地化过渡发生。此外,我们能够准确确定Lyapunov指数$γ(E)$和移动性边缘$ e_c $。通过分析Lyapunov指数,我们在跳跃参数平面中确定关键区域。此外,随着能量接近移动性边缘,我们观察到$ν= 1 $的定位长度的关键指数。最后,我们证明可以以其Lyapunov指数$γ(E)$和Avila的加速度$ω(E)$来表征不同的系统。
In this study, we investigate Anderson localization in a one-dimensional lattice with a mosaic off-diagonal quasiperiodic hopping. Our findings reveal that the localization behavior of zero-energy states is highly dependent on the parity of the mosaic modulation period, denoted as $κ$. Specifically, when $κ$ is an odd integer, there is no Anderson localization transition even for large quasiperiodic hopping strengths, and the zero-energy state remains in a critical state. On the other hand, for an even $κ$ and a generic quasiperiodic hopping, the zero-energy state becomes a localized edge state at either the left or right end of the system. Additionally, we observe that the geometric mean value of the energy spectrum is equal to the constant hopping for an even $κ$, while for an odd $κ$, it is equal to the geometric mean value of the hopping. This odd-even effect of the mosaic period also extends to other eigenstates near zero energy. More specifically, for an odd $κ$, there exists an energy window in which the eigenstates remain critical even for strong quasiperiodic hopping. In contrast, for an even $κ$, an Anderson localization transition occurs as the hopping strength increases. Furthermore, we are able to accurately determine the Lyapunov exponent $γ(E)$ and the mobility edges $E_c$. By analyzing the Lyapunov exponent, we identify critical regions in the hopping-energy parameter planes. Additionally, as the energy approaches the mobility edges, we observe a critical index of localization length of $ν=1$. Finally, we demonstrate that different systems can be characterized by their Lyapunov exponent $γ(E)$ and Avila's acceleration $ω(E)$.