论文标题
重新审视了塞特尔的多个艾森斯坦系列的正规化多个艾森斯坦系列
Stuffle regularized multiple Eisenstein series revisited
论文作者
论文摘要
多个艾森斯坦系列是复杂上半平面中的全态函数,可以看作是多个Zeta值和经典Eisenstein系列之间的杂交。它们最初是由Gangl-Kaneko-Zagier在2006年定义的,从那时起,已经研究了许多变体和正规化。它们在模块化形式的世界和多个Zeta值之间提供了自然的桥梁。在本说明中,我们根据霍夫曼(Hoffman)引入的谐波代数的HOPF代数结构对sTECTLE的多个Eisenstein系列进行了新的代数解释。
Multiple Eisenstein series are holomorphic functions in the complex upper-half plane, which can be seen as a crossbreed between multiple zeta values and classical Eisenstein series. They were originally defined by Gangl-Kaneko-Zagier in 2006, and since then, many variants and regularizations of them have been studied. They give a natural bridge between the world of modular forms and multiple zeta values. In this note, we give a new algebraic interpretation of stuffle regularized multiple Eisenstein series based on the Hopf algebra structure of the harmonic algebra introduced by Hoffman.