论文标题

基于POD的减少订购方法,用于由参数偏微分方程控制的最佳控制问题,并具有不同的边界控制

POD-based reduced order methods for optimal control problems governed by parametric partial differential equation with varying boundary control

论文作者

Strazzullo, Maria, Vicini, Fabio

论文摘要

在这项工作中,我们提出了针对由参数部分微分方程控制的不同边界最佳控制问题的量身定制模型订单。随着边界控制的变化,我们的意思是在边界控制作用在系统上的情况下会改变特定参数。这种特殊的配方可能受益于降低模型顺序。确实,在许多应用领域(例如地球物理和能源工程)中,对该模型的快速可靠模拟可能具有最大的用处。但是,变化的边界控制具有状态和伴随变量的非常复杂和多元化的参数行为。例如,状态解决方案更改边界控制参数可能具有传输现象。此外,这个问题失去了其仿射结构。众所周知,在这种情况下,无论是准确性还是效率,经典模型订购技术都在这种情况下失败。因此,我们提出了受波动现象时使用的方法的减少方法。实际上,我们将标准正交分解与两种量身定制策略进行比较:几何铸造和局部正交分解。几何重铸造在参考域中求解优化系统,简化了手动避免过度还原的问题,而局部正交分解构建了局部基础,以提高在非常一般的设置中降低解决方案的准确性(几何重新铸造不可行)。我们比较了基于增加复杂性的几何形状的两个不同数值实验的各种方法。

In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源