论文标题
将剪切纳入随机的欧拉拉拉格朗日方法中,以进行复杂流体和软材料的流变学研究
Incorporating Shear into Stochastic Eulerian Lagrangian Methods for Rheological Studies of Complex Fluids and Soft Materials
论文作者
论文摘要
我们开发了将剪切纳入波动流体动力学方法中的计算方法。我们的动机是复杂的流体和软材料的流变响应。我们的方法基于连续的随机流体动力方程,该方程受晶胞周期性细胞上的剪切边界条件的影响,其方式与分子动力学的Lees-Edwards条件相似。我们的方法始终如一地考虑了微观结构弹性力学,流体结构流体动力耦合和热波动。对于实际模拟,我们开发了用于处理剪切的广义周期性边界条件的有效随机场产生的数值方法。我们表明,我们的数值方法与波动耗散平衡和接近平衡的统计力学一致。作为实践中的演示,我们提出了几项原型流变响应研究。其中包括(i)聚合物液的剪切稀薄,(ii)复合模量,用于聚合脂质囊泡的振荡响应,以及(iii)在凝胶样材料的剪切下衰老。
We develop computational methods that incorporate shear into fluctuating hydrodynamics methods. We are motivated by the rheological responses of complex fluids and soft materials. Our approach is based on continuum stochastic hydrodynamic equations that are subject to shear boundary conditions on the unit periodic cell in a manner similar to the Lees-Edwards conditions of molecular dynamics. Our methods take into account consistently the microstructure elastic mechanics, fluid-structure hydrodynamic coupling, and thermal fluctuations. For practical simulations, we develop numerical methods for efficient stochastic field generation that handle the sheared generalized periodic boundary conditions. We show that our numerical methods are consistent with fluctuation dissipation balance and near-equilibrium statistical mechanics. As a demonstration in practice, we present several prototype rheological response studies. These include (i) shear thinning of a polymeric fluid, (ii) complex moduli for the oscillatory responses of a polymerized lipid vesicle, and (iii) aging under shear of a gel-like material.