论文标题
非线性光学电流的量子动力学理论:有限的费米表面和费米海洋的贡献
Quantum Kinetic Theory of Nonlinear Optical Currents: Finite Fermi surface and Fermi sea contributions
论文作者
论文摘要
量子动力学框架提供了一种多功能方法,用于研究晶体固体的动力学光学和运输电流。在本文中,从密度 - 矩阵运动方程式开始,我们提出了一条一般的理论途径,以优雅和透明地获得非线性光学响应。我们设计了一种适用于具有任意带结构的材料的动力学理论,并捕获了内的和频带间相干效应,有限的费米表面和无序效应。我们介绍了由频带间和密度矩阵的内映成分的干扰产生的非线性光学电流的分类,每种贡献都具有不同的对称性和量子几何来源。在这种情况下,我们报告了四个发现。 (i)费米黄金法则方法不足以得出注射电流的正确表达,这是我们在理论中补救的缺点,同时将注射电流与内键的连接量相关联,对二阶密度矩阵的贡献。 (ii)带式间的贡献产生的共振电流可在除了众所周知的异常非线性电流(非谐波)之外,不论对任何对称性约束,都可以生存下来,这需要时间反向对称性。 (iii)通常,通过有限费米表面的贡献,非线性电流显着增强。 (iv)有限的费米表面和费米海通过贡献导致了相当大的新型非线性效应,我们将双重谐振和高阶极端置入。作为例证,我们计算了拓扑抗铁磁铁cumnas和薄膜的非线性响应,倾斜的Weyl半光,以带间相干效应为主。我们发现,cumnas的非线性响应对有限磁化场的方向和梁的极化角度的选择有反应,而weyl sagimetal仅对倾斜。
The quantum kinetic framework provides a versatile method for investigating the dynamical optical and transport currents of crystalline solids. In this paper, starting from the density-matrix equations of motion, we present a general theoretical path to obtain nonlinear optical responses elegantly and transparently. We devise a kinetic theory applicable to materials with arbitrary band structures and captures intraband and interband coherence effects, finite Fermi surfaces, and disorder effects. We present a classification of nonlinear optical currents arising from the interference of interband and intraband components of the density matrix with distinct symmetry and quantum geometrical origin for each contribution. In this context, we report four findings. (i) The Fermi Golden Rule approach is insufficient to derive the correct expression for the injection current, a shortcoming that we remedy in our theory while associating the injection current with the intraband-interband contribution to the second-order density matrix. (ii) The interband-intraband contribution yields a resonant current that survives irrespective of any symmetry constraint in addition to the well-known anomalous nonlinear current (non-resonant), which requires time-reversal symmetry. (iii) Quite generally, the nonlinear current is significantly enhanced by contributions from the finite Fermi surface. (iv) The finite Fermi surface and Fermi sea additionally lead to sizable novel nonlinear effects via contributions we term double resonant and higher-order pole. As an illustration, we compute the nonlinear response of topological antiferromagnet CuMnAs and thin film tilted Weyl semimetals dominated by interband coherence effects. We find that the nonlinear response of CuMnAs is responsive to the direction of finite magnetization field and choice of the polarization angle of the beam, while Weyl semimetal only to tilt.