论文标题
Dain对黑洞初始数据的不变
Dain's invariant for black hole initial data
论文作者
论文摘要
非扰动制度中的动态黑洞在数学上没有很好地理解。研究空间描述动态黑洞的近似对称性,可以深入了解其结构。利用近似对称性的属性与实际对称性相吻合时,它们可以构建表征对称性的几何不变式。在本文中,我们将表征平稳性的几何不变性的构造扩展到了与黑洞空位相对应的爱因斯坦方程的初始数据集的情况。我们证明了解决边界价值问题的解决方案的存在和唯一性,表明人们总是可以在黑洞空间中找到近似的杀伤向量,并且在存在时它们与实际的杀伤向量相吻合。在时间对称设置中,我们利用2+1分解来构造几何不变的MOT,并且仅当本地满足杀戮初始数据方程时就会消失。
Dynamical black holes in the non-perturbative regime are not mathematically well understood. Studying approximate symmetries of spacetimes describing dynamical black holes gives an insight into their structure. Utilising the property that approximate symmetries coincide with actual symmetries when they are present allows one to construct geometric invariants characterising the symmetry. In this paper, we extend Dain's construction of geometric invariants characterising stationarity to the case of initial data sets for the Einstein equations corresponding to black hole spacetimes. We prove the existence and uniqueness of solutions to a boundary value problem showing that one can always find approximate Killing vectors in black hole spacetimes and these coincide with actual Killing vectors when they are present. In the time-symmetric setting we make use of a 2+1 decomposition to construct a geometric invariant on a MOTS that vanishes if and only if the Killing initial data equations are locally satisfied.