论文标题
通过调查实验验证基于参数的意见动态
Validating argument-based opinion dynamics with survey experiments
论文作者
论文摘要
模型的经验验证仍然是意见动力学中最重要的挑战之一。在这项贡献中,我们报告了将调查实验中数据与意见形成的计算模型相结合的最新发展。我们扩展了对基于参数的观点动态模型的经验评估的先前工作,其中有偏见的处理是主要机制。虽然先前的工作(Banisch&Shamon,印刷中)侧重于使用有关参数引起的意见变化的实验数据校准微观机制,但本文使用调查实验中收集的经验数据集中于宏观水平。为此,参数模型是由平衡信息的外部来源扩展的,该信息可以控制相对于其他嘈杂过程的同伴影响过程的影响。我们表明,被调查的意见分布与参数空间中特定区域的高度准确性相匹配,这表明社会影响力和外部噪声的同等影响。更重要的是,鉴于宏数据的偏置处理的估计强度与在微观水平上达到高可能性的值兼容。因此,本文的主要贡献是表明,基于参数的扩展模型从参数引起的态度变化到宏级意见分布提供了一个坚实的桥梁。除此之外,我们还回顾了基于参数的模型的开发,并提出了一种新方法,以自动分类模型结果。
The empirical validation of models remains one of the most important challenges in opinion dynamics. In this contribution, we report on recent developments on combining data from survey experiments with computational models of opinion formation. We extend previous work on the empirical assessment of an argument-based model for opinion dynamics in which biased processing is the principle mechanism. While previous work (Banisch & Shamon, in press) has focused on calibrating the micro mechanism with experimental data on argument-induced opinion change, this paper concentrates on the macro level using the empirical data gathered in the survey experiment. For this purpose, the argument model is extended by an external source of balanced information which allows to control for the impact of peer influence processes relative to other noisy processes. We show that surveyed opinion distributions are matched with a high level of accuracy in a specific region in the parameter space, indicating an equal impact of social influence and external noise. More importantly, the estimated strength of biased processing given the macro data is compatible with those values that achieve high likelihood at the micro level. The main contribution of the paper is hence to show that the extended argument-based model provides a solid bridge from the micro processes of argument-induced attitude change to macro level opinion distributions. Beyond that, we review the development of argument-based models and present a new method for the automated classification of model outcomes.