论文标题

随着传输电子显微镜的进步,加速量子材料的发展

Accelerating quantum materials development with advances in transmission electron microscopy

论文作者

Moradifar, Parivash, Liu, Yin, Shi, Jiaojian, Thurston, Matti Lawton Siukola, Utzat, Hendrik, van Driel, Tim B., Lindenberg, Aaron M., Dionne, Jennifer A.

论文摘要

量子材料正在推动一场技术革命,同时测试了过去一个世纪的许多核心理论。诸如拓扑绝缘子,复杂氧化物,量子点,颜色中心托管半导体和其他类型的强相关材料等材料可以表现出奇异的特性,例如边缘电导率,多效性,磁性,单光子发射和光学纺丝锁定。这些新出现的特性出现,并在很大程度上取决于详细的原子尺度结构,包括原子缺陷,掺杂剂和晶格堆叠。在这篇综述中,在引入了不同类别的量子材料和量子激发之后,我们描述了电子显微镜领域的进步,包括原位和操作中的EM,可以加速量子材料的进步。 Our review describes EM methods including: i) principles and operation modes of EM, ii) EM spectroscopies, such as electron energy loss spectroscopy, cathodoluminescence, and electron energy gain spectroscopy, iii) 4D scanning transmission electron microscopy, iv) dynamic and ultrafast EM, v) complimentary ultrafast spectroscopies, and vi) atomic electron tomography.我们讨论这些方法如何将量子材料中的结构函数关系延伸至生高度量表和飞秒时间分辨率,以及它们如何实现量子材料的高分辨率操纵。在众多结果中,我们的综述重点介绍了EM如何能够鉴定量子缺陷的3D结构,测量量子激发的可逆和可转移动力学,绘制激子状态和单个光子发射,测量纳米级热传输以及耦合的激发动态,并测量量化量的量化量的内部元素,并测量量子元素的内部材料,以及所有量子材料的量表。

Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, quantum dots, color center hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the materials detailed atomic scale structure, including atomic defects, dopants, and lattice stacking. In this review, after introduction of different classes of quantum materials and quantum excitations, we describe how progress in the field of electron microscopy, including in situ and in operando EM, can accelerate advances in quantum materials. Our review describes EM methods including: i) principles and operation modes of EM, ii) EM spectroscopies, such as electron energy loss spectroscopy, cathodoluminescence, and electron energy gain spectroscopy, iii) 4D scanning transmission electron microscopy, iv) dynamic and ultrafast EM, v) complimentary ultrafast spectroscopies, and vi) atomic electron tomography. We discuss how these methods inform structure function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable high resolution manipulation of quantum materials. Among numerous results, our review highlights how EM has enabled identification of the 3D structure of quantum defects, measuring reversible and metastable dynamics of quantum excitations, mapping exciton states and single photon emission, measuring nanoscale thermal transport and coupled excitation dynamics, and measuring the internal electric field of quantum heterointerfaces, all at the quantum materials intrinsic atomic and near atomic-length scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源