论文标题

repmode:学习重新参数化各种专家以进行亚细胞结构预测

RepMode: Learning to Re-parameterize Diverse Experts for Subcellular Structure Prediction

论文作者

Zhou, Donghao, Gu, Chunbin, Xu, Junde, Liu, Furui, Wang, Qiong, Chen, Guangyong, Heng, Pheng-Ann

论文摘要

在生物学研究中,荧光染色是揭示亚细胞结构的位置和形态的关键技术。但是,它缓慢,昂贵且对细胞有害。在本文中,我们将其建模为一项被称为亚细胞结构预测(SSP)的深度学习任务,旨在预测来自3D传输光图像的多个亚细胞结构的3D荧光图像。不幸的是,由于当前生物技术的局限性,每个图像在SSP中被部分标记。此外,自然而然的亚细胞结构的大小差异很大,这会导致SSP的多尺度问题。为了克服这些挑战,我们建议重新参数化的多元化专家(repmode),该网络通过任务感知的先验者动态组织其参数以处理指定的单标预测任务。在repmode中,旨在学习所有任务的通用参数,并执行门控重新参数化(GATREP)来生成每个任务的专业参数,通过该端子可以通过repmode可以维持一个纯正的实用拓扑,例如普通网络,以及对纯粹的拓扑,以及对同上的tosologe a theoregety tosolotighty tosology tosology tosolicy,则构图进行了通用参数。全面的实验表明,Repmode可以在SSP中实现最先进的整体性能。

In biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, it is slow, expensive, and harmful to cells. In this paper, we model it as a deep learning task termed subcellular structure prediction (SSP), aiming to predict the 3D fluorescent images of multiple subcellular structures from a 3D transmitted-light image. Unfortunately, due to the limitations of current biotechnology, each image is partially labeled in SSP. Besides, naturally, subcellular structures vary considerably in size, which causes the multi-scale issue of SSP. To overcome these challenges, we propose Re-parameterizing Mixture-of-Diverse-Experts (RepMode), a network that dynamically organizes its parameters with task-aware priors to handle specified single-label prediction tasks. In RepMode, the Mixture-of-Diverse-Experts (MoDE) block is designed to learn the generalized parameters for all tasks, and gating re-parameterization (GatRep) is performed to generate the specialized parameters for each task, by which RepMode can maintain a compact practical topology exactly like a plain network, and meanwhile achieves a powerful theoretical topology. Comprehensive experiments show that RepMode can achieve state-of-the-art overall performance in SSP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源