论文标题

在异性或相关性条件下的广义线性模型的强大仿真设计

Robust simulation design for generalized linear models in conditions of heteroscedasticity or correlation

论文作者

Gill, Andrew, Warne, David J., Overstall, Antony M., McGrory, Clare, McGree, James M.

论文摘要

经常使用计算昂贵模拟的输入输出数据的元模型用于预测,优化或灵敏度分析。设计实验可以实现拟合,并且对于计算昂贵的模拟,设计效率很重要。模拟输出中的异质性是常见的,并且通过重复使用伪随机数流以减少元模型参数估计量的方差而诱导依赖性是有益的。在本文中,我们为计算机实验开发了一种计算方法,而无需假设独立性或相同的错误分布。通过将方差或相关结构的明确包含在元模型分布中,可以使用最大似然估计或广义估计方程来获得适当的Fisher信息矩阵。然后可以在计算上寻求强大的设计,从而最大化该矩阵的某些相关摘要度量,并在任何未知参数的先前分布上平均。

A meta-model of the input-output data of a computationally expensive simulation is often employed for prediction, optimization, or sensitivity analysis purposes. Fitting is enabled by a designed experiment, and for computationally expensive simulations, the design efficiency is of importance. Heteroscedasticity in simulation output is common, and it is potentially beneficial to induce dependence through the reuse of pseudo-random number streams to reduce the variance of the meta-model parameter estimators. In this paper, we develop a computational approach to robust design for computer experiments without the need to assume independence or identical distribution of errors. Through explicit inclusion of the variance or correlation structures into the meta-model distribution, either maximum likelihood estimation or generalized estimating equations can be employed to obtain an appropriate Fisher information matrix. Robust designs can then be computationally sought which maximize some relevant summary measure of this matrix, averaged across a prior distribution of any unknown parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源