论文标题
FLAREON:隐形的任何2没有中毒的后门注射
Flareon: Stealthy any2any Backdoor Injection via Poisoned Augmentation
论文作者
论文摘要
一旦成功,开放软件供应链攻击就可以在关键任务应用程序中精确成本。随着用于深度学习的开源生态系统蓬勃发展并变得越来越普遍,他们呈现了以前未开发的途径,以在深神经网络模型中未探索过代码的恶意后门。本文提出了Flareon,这是一种小型,隐形,看似无害的代码修改,专门针对基于运动的触发器的数据增强管道。 Flareon既不改变地面真相标签,也没有修改训练损失目标,也不会对受害者模型架构,培训数据和培训超标人进行先验知识。然而,它在培训方面具有令人惊讶的大幅度化 - 在Flareon下训练的模型学习了强大的目标条件(或“任何2y”)后门。与后门攻击相比,所得模型可以显示出任何目标选择的攻击成功率和更好的清洁准确性,而后门攻击不仅要抓住更大的控制权,而且还具有更大的限制性攻击能力。我们还证明了Flareon对最近的防御能力的有效性。 Flareon是完全开源的,可在线提供深度学习社区:https://github.com/lafeat/flareon。
Open software supply chain attacks, once successful, can exact heavy costs in mission-critical applications. As open-source ecosystems for deep learning flourish and become increasingly universal, they present attackers previously unexplored avenues to code-inject malicious backdoors in deep neural network models. This paper proposes Flareon, a small, stealthy, seemingly harmless code modification that specifically targets the data augmentation pipeline with motion-based triggers. Flareon neither alters ground-truth labels, nor modifies the training loss objective, nor does it assume prior knowledge of the victim model architecture, training data, and training hyperparameters. Yet, it has a surprisingly large ramification on training -- models trained under Flareon learn powerful target-conditional (or "any2any") backdoors. The resulting models can exhibit high attack success rates for any target choices and better clean accuracies than backdoor attacks that not only seize greater control, but also assume more restrictive attack capabilities. We also demonstrate the effectiveness of Flareon against recent defenses. Flareon is fully open-source and available online to the deep learning community: https://github.com/lafeat/flareon.