论文标题
AI在森林监测中的应用需要遥感基准数据集
AI applications in forest monitoring need remote sensing benchmark datasets
论文作者
论文摘要
随着高分辨率遥感技术的上升,可用于森林监测的数据量发生了爆炸,并且随附人工智能应用的增长,以自动从这些数据集中获得感兴趣的森林特性。许多研究在较小的时空量表上使用自己的数据,并证明了现有或改编的数据科学方法在特定任务中的应用。这种方法通常涉及密集且耗时的数据收集和处理,但生成的结果仅限于特定的生态系统和传感器类型。缺乏对所使用数据类型和结构如何影响分析算法的性能和准确性的广泛认可。为了更有效地加速现场的进展,迫切需要对可以测试和比较的方法进行基准测试数据集。 在这里,我们讨论缺乏标准化如何影响对关键森林特性估计的信心,以及如何在评估方法性能时考虑数据收集的考虑。我们提出了务实的要求和考虑因素,以创建用于森林监视应用程序的严格,有用的基准数据集,并讨论现代数据科学的工具如何改善现有数据的使用。我们列出了一组示例大规模数据集,这些数据集可能有助于基准测试,并为社区驱动,代表性的基准测试计划如何使该领域受益。
With the rise in high resolution remote sensing technologies there has been an explosion in the amount of data available for forest monitoring, and an accompanying growth in artificial intelligence applications to automatically derive forest properties of interest from these datasets. Many studies use their own data at small spatio-temporal scales, and demonstrate an application of an existing or adapted data science method for a particular task. This approach often involves intensive and time-consuming data collection and processing, but generates results restricted to specific ecosystems and sensor types. There is a lack of widespread acknowledgement of how the types and structures of data used affects performance and accuracy of analysis algorithms. To accelerate progress in the field more efficiently, benchmarking datasets upon which methods can be tested and compared are sorely needed. Here, we discuss how lack of standardisation impacts confidence in estimation of key forest properties, and how considerations of data collection need to be accounted for in assessing method performance. We present pragmatic requirements and considerations for the creation of rigorous, useful benchmarking datasets for forest monitoring applications, and discuss how tools from modern data science can improve use of existing data. We list a set of example large-scale datasets that could contribute to benchmarking, and present a vision for how community-driven, representative benchmarking initiatives could benefit the field.