论文标题
大规模推荐系统中偏好启发的变分因子机器
Variational Factorization Machines for Preference Elicitation in Large-Scale Recommender Systems
论文作者
论文摘要
分解机(FMS)是在稀疏观察中的回归和分类的强大工具,该工具已成功地应用于协作过滤时,尤其是当有关用户或项目的附带信息可用时。已经提出了贝叶斯公式的FMS来提供对模型预测的置信区间,但是它们通常涉及马尔可夫链蒙特卡洛方法,这些方法需要许多样品来提供准确的预测,从而在大规模数据的背景下导致缓慢的训练。在本文中,我们提出了分因机器的变分设备,使我们能够得出一个简单的目标,可以使用标准的迷你批量随机梯度下降轻松地优化,从而可以适合大规模数据。我们的算法了解了用户和项目参数的后验分布,这导致了对预测的置信区间。我们使用几个数据集证明,就预测准确性而言,它比现有方法具有可比性或更好的性能,并在主动学习策略(例如偏好启发技术)中提供了一些应用。
Factorization machines (FMs) are a powerful tool for regression and classification in the context of sparse observations, that has been successfully applied to collaborative filtering, especially when side information over users or items is available. Bayesian formulations of FMs have been proposed to provide confidence intervals over the predictions made by the model, however they usually involve Markov-chain Monte Carlo methods that require many samples to provide accurate predictions, resulting in slow training in the context of large-scale data. In this paper, we propose a variational formulation of factorization machines that allows us to derive a simple objective that can be easily optimized using standard mini-batch stochastic gradient descent, making it amenable to large-scale data. Our algorithm learns an approximate posterior distribution over the user and item parameters, which leads to confidence intervals over the predictions. We show, using several datasets, that it has comparable or better performance than existing methods in terms of prediction accuracy, and provide some applications in active learning strategies, e.g., preference elicitation techniques.