论文标题

机器学习协助推导了金属磁铁的有效低能模型

Machine learning assisted derivation of effective low energy models for metallic magnets

论文作者

Sharma, Vikram, Wang, Zhentao, Batista, Cristian D.

论文摘要

我们考虑了从具有经典局部矩的近核晶格模型(KLM)中提取有效的低能旋转模型的问题。有效的自旋旋转相互作用对近托交换$ j $的非分析依赖性不包括在零温度下使用二阶Ruderman-kittel-kasuya-Yosida(Rkky)以外使用扰动理论的可能性。在这里,我们引入了机器学习(ML)辅助方案,以通过整合原始KLM的传导电子来提取有效的两旋和四旋链互动。所得的有效自旋模型再现了用原始KLM获得的相图作为磁场和易于轴各向异性的函数,并揭示了导致该场引起的Skymion晶相负责的有效的四旋转相互作用。此外,这种最小的自旋模型可以有效地计算静态和动力学特性,相对于原始KLM,数值成本要低得多。通过有效模型计算的完全极化相中的动力自旋结构因子的比较,尽管该信息未包含在训练数据集中,但仍显示了镁分散剂的良好一致性。

We consider the problem of extracting an effective low-energy spin model from a Kondo Lattice Model (KLM) with classical localized moments. The non-analytic dependence of the effective spin-spin interactions on the Kondo exchange $J$ excludes the possibility of using perturbation theory beyond the second order Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction at zero temperature. Here we introduce a Machine Learning (ML) assisted protocol to extract effective two- and four-spin interactions by integrating out the conduction electrons of the original KLM. The resulting effective spin model reproduces the phase diagram obtained with the original KLM as a function of magnetic field and easy-axis anisotropy and reveals the effective four-spin interactions that are responsible for the field induced skyrmion crystal phase. Moreover, this minimal spin model enables an efficient computation of static and dynamical properties with a much lower numerical cost relative to the original KLM. A comparison of the dynamical spin structure factor in the fully polarized phase computed with the effective model and the original KLM reveals a good agreement for the magnon dispersion despite the fact that this information was not included in the training data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源