论文标题

$ 3D $的Spin-4型号的主操作和螺旋分解

Master Actions and Helicity Decomposition for Spin-4 Models in $3D$

论文作者

Mendonça, Elias L., Bittencourt, R. Schimidt

论文摘要

目前的作品引入了主操作,该动作在四个自偶型型号(i)$之间插值,用于描述$ d = 2+1 $尺寸的大量自旋-4粒子。这些型号由$ i = 1,2,3 $和4 $指定,代表衍生产品的订单。我们的结果表明,这四个描述是通过比较其相关函数的量子等效的,直到接触项。几何方法被证明是描述第三和第四阶模型的有用工具。主作用的构建取决于混合项的引入,必须没有粒子含量。我们使用螺旋分解方法来验证这些术语中缺少粒子含量的方法,以确保主作用的正确功能。

The present work introduces a master action that interpolates between four self-dual models, $SD(i)$, for describing massive spin-4 particles in $D=2+1$ dimensions. These models are designated by $i=1,2,3$ and $4$, representing the order in derivatives. Our results show that the four descriptions are quantum equivalent through comparison of their correlation functions, up to contact terms. A geometrical approach is demonstrated to be a useful tool in describing the third and fourth order models. The construction of the master action relies on the introduction of mixing terms, which must be free of particle content. We use the helicity decomposition method to verify the absence of particle content in these terms, ensuring the proper functioning of the master action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源